[1] HUANG X, EL-SAYED I H, QIAN W, et al. Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods [J]. Journal of the American Chemical Society, 2006, 128(6): 2115-2120.
[2] YANG K, ZHANG S, ZHANG G, et al. Graphene in Mice: Ultrahigh In Vivo Tumor Uptake and Efficient Photothermal Therapy [J]. Nano Letters, 2010, 10(9): 3318-3323.
[3] HLEB E Y, HAFNER J H, MYERS J N, et al. LANTCET: elimination of solid tumor cells with photothermal bubbles generated around clusters of gold nanoparticles [J]. Nanomedicine, 2008, 3(5): 647-667.
[4] NAM J, WON N, JIN H, et al. pH-Induced Aggregation of Gold Nanoparticles for
[5] LIU Z, FAN A C, RAKHRA K, et al. Supramolecular Stacking of Doxorubicin on Carbon Nanotubes for In Vivo Cancer Therapy [J]. Angewandte Chemie International Edition, 2009, 48(41): 7668-7672.
[6] LU F, WANG J, YANG L, et al. A facile one-pot synthesis of colloidal stable, monodisperse, highly PEGylated CuS@mSiO2 nanocomposites for the combination of photothermal therapy and chemotherapy [J]. Chemical Communications, 2015, 51(46): 9447-9450.
[7] RIEDINGER A, AVELLINI T, CURCIO A, et al. Post-Synthesis Incorporation of 64Cu in CuS Nanocrystals to Radiolabel Photothermal Probes: A Feasible Approach for Clinics [J]. Journal of the American Chemical Society, 2015, 137(48): 15145-15151.
[8] TIAN Q, JIANG F, ZOU R, et al. Hydrophilic Cu9S5 Nanocrystals: A Photothermal Agent with a 25.7% Heat Conversion Efficiency for Photothermal Ablation of Cancer Cells in Vivo [J]. ACS Nano 2011, 5(12): 9761-9771.
[9] CHEN H, LUO X, CAI W, et al. Biomimetic Copper-Doped Polypyrrole Nanoparticles for Enhanced Cancer Low-Temperature Photothermal Therapy [J]. International Journal of Nanomedicine, 2023,(18):7533-75410.
[10] YANG J, CHOI J, BANG D, et al. Convertible Organic Nanoparticles for Near‐Infrared Photothermal Ablation of Cancer Cells [J]. Angewandte Chemie, 2010, 123(2): 461-464.
[11] JIANG B-P, ZHANG L, ZHU Y, et al. Water-soluble hyaluronic acid–hybridized polyaniline nanoparticles for effectively targeted photothermal therapy [J]. Journal of Materials Chemistry B, 2015, 3(18): 3767-3776.
[12] HSIAO C W, CHEN H L, LIAO Z X, et al. Effective Photothermal Killing of Pathogenic Bacteria by Using Spatially Tunable Colloidal Gels with Nano‐Localized Heating Sources [J]. Advanced Functional Materials, 2014, 25(5): 721-728.
[13] KORUPALLI C, HUANG C-C, LIN W-C, et al. Acidity-triggered charge-convertible nanoparticles that can cause bacterium-specific aggregation in situ to enhance photothermal ablation of focal infection [J]. Biomaterials, 2017, 116(1-9).
[14] PANG Q, WU K, JIANG Z, et al. A Polyaniline Nanoparticles Crosslinked Hydrogel with Excellent Photothermal Antibacterial and Mechanical Properties for Wound Dressing [J]. Macromolecular Bioscience, 2021, 22(3):2100386.
[15] CHEN Z, YAO X, LIU L, et al. Blood coagulation evaluation of N -alkylated chitosan [J]. Carbohydrate Polymers, 2017, 173(259-268).
[16] DOWLING M B, KUMAR R, KEIBLER M A, et al. A self-assembling hydrophobically modified chitosan capable of reversible hemostatic action [J]. Biomaterials, 2011, 32(13): 3351-3357.
[17] BATES C M. Self‐assembly: From chemistry to applications [J]. Journal of Polymer Science, 2024, 62(4): 637-638.
[18] HUFENDIEK A, TROUILLET V, MEIER M A R, et al. Temperature Responsive Cellulose-graft-Copolymers via Cellulose Functionalization in an Ionic Liquid and RAFT Polymerization [J]. Biomacromolecules, 2014, 15(7): 2563-2572.
[19] ISIK M, SARDON H, MECERREYES D. Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials [J]. International Journal of Molecular Sciences, 2014, 15(7): 11922-11940.
[20] GUPTA A, KEDDIE D J, KANNAPPAN V, et al. Production and characterisation of bacterial cellulose hydrogels loaded with curcumin encapsulated in cyclodextrins as wound dressings [J]. European Polymer Journal, 2019, 118: 437-450.
[21] GUAN Q-F, YANG H-B, HAN Z-M, et al. Sustainable Cellulose-Nanofiber-Based Hydrogels [J]. ACS Nano, 2021, 15(5): 7889-7898.
[22] DE FRANCE K J, HOARE T, CRANSTON E D. Review of Hydrogels and Aerogels Containing Nanocellulose [J]. Chemistry of Materials, 2017, 29(11): 4609-4631.
[23] JUAN L-T, LIN S-H, WONG C-W, et al. Functionalized Cellulose Nanofibers as Crosslinkers to Produce Chitosan Self-Healing Hydrogel and Shape Memory Cryogel [J]. ACS Applied Materials & Interfaces, 2022, 14(32): 36353-36365.